University Of Sheffield.

Road brightness and cycling rates after-dark

Dr Jim Uttley

Lighting Research Group, University of Sheffield
$15^{\text {th }}$ Annual Cycling \& Society Symposium, UWE Bristol, 6-7 Sep 2018

Importance of light for cycling

Transportation (2011) 38:153-168
DOI 10.1007/s11116-010-9284-y

Motivators and deterrents of bicycling: comparing influences on decisions to ride

Meghan Winters•Gavin Davidson•Diana Kao •Kay Teschke

Published online: 13 June 2010
© Springer Science+Business Media, LLC. 2010

[^0]
Importance of light for cycling

Survey of potential and current cyclists ($\mathrm{N}=1,402$)

Ratings of 73 potential deterrents and motivators for cycling
-1 ("Much less likely to cycle") to +1 ("Much more likely to cycle")

Mean rating $=+0.50$
Ranked in top 10 biggest motivators

Mean rating $=-0.59$
Ranked in top 10 biggest deterrents

Importance of light for cycling

Survey of potential and current cyclists ($\mathrm{N}=1,402$)

Ratings of 73 potential deterrents and motivators for cycling
-1 ("Much less likely to cycle") to +1 ("Much more likely to cycle")

Mean rating $=+0.50$
Ranked in top 10 biggest motivators

The route is not well lit after dark

Mean rating for regular cyclists $=-0.37$

Mean rating for potential cyclists $=-0.70$

Importance of light for cycling

Perceptions of cycling safety during daylight and hours of darkness

Importance of light for cycling

Perceptions of cycling safety during daylight and hours of darkness

Source: Sustrans (2018), "BIKElife All cities publication", p. 12

Importance of light for cycling

Observational data: Effect of darkness on cyclist numbers

(T) Crock for updates

Lighting Res. Technol. 2017; 0: 1-10

A whole-year approach showing that ambient light level influences walking and cycling
S Fotios PhD, J Uttley PhD and S Fox BSc
School of Architecture, University of Sheffield, UK
Received 19 July 2017; Revised 29 September 2017; Accepted 2 October 2017

> Many studies have used surveys to investigate the reactions to changes in lighting from people who walk or cycle. An alternative approach is to use objective data, specifically the number of pedestrians and cyclists present under different lighting conditions. Such data have been reported previously using a daylight savings transition approach. This paper presents a different method for analysing the effect of ambient light conditions in which data from the whole year are examined, rather than only the two weeks either side of the biannual daylight savings clock changes. The results confirm that ambient light has a significant impact For a given time of day, more people walk or cycle when it is daylight than after dark and more people cycle on cycle trails and walk on foot paths after dark when they are lit than when they are unlit. While both methods use an odds ratio approach, which should account for environmental changes other than lighting, the results suggest the daylight savings method of analysis better isolates changes in weather from the effects of ambient light on travel choice than does the whole-year method.

Road lighting in subsidiary roads is intended
cyclists, ${ }^{12}$ although one study has suggested that pedestrians' estimates of the threshold distance at which they are recognisable as a

Quantifying effect of darkness

Date in year

Quantifying effect of darkness - odds ratio

Case hour in daylight \div Case hour in darkness

Control hour when case hour in daylight

Control hour when

 case hour in darkness= Odds ratio - effect of darkness on cyclist numbers

Quantifying effect of darkness - odds ratio

Case hour in daylight \div Case hour in darkness

Control hour when
 case hour in daylight

= Odds ratio - effect of darkness on cyclist numbers

Odds ratio > 1 indicates darkness causes decrease in cyclists

Quantifying effect of darkness

Source: Fotios, Uttley \& Fox (2017), "A whole-year approach showing that ambient light level influences walking and cycling"

$$
\begin{aligned}
& \text { ? ? } \\
& \begin{array}{c}
5 \\
5 ? ~ ? ~ ? ~
\end{array} \\
& \begin{array}{r}
3 ? ? \text { ? } \\
\text { ? ? ? ? ? ? } \\
\text { ? ? }
\end{array} \\
& \text { ?? } \\
& \begin{array}{l}
\text { ? ? ? } \\
\text { ? ? ? }
\end{array} \\
& \begin{array}{l}
\text { ? ? ? } \\
\text { ?? ? ? } \\
\text { ? ? ? ? }
\end{array}
\end{aligned}
$$

Lighting data

Night-time aerial photography for Birmingham - UK Environment Agency
Pixel intensities provide information about brightness and colour of lighting

Source: Hale et al (2013),
"Mapping Lightscapes:
Spatial patterning of artificial lighting in an urban landscape"

Lighting data

Source: Hale et al (2013), "Mapping Lightscapes: Spatial patterning of artificial lighting in an urban landscape"

Cycling data

48 cycle counters in Birmingham

Hourly data, 2012-2015

Case hour (18:00)

Control hours
(14:00, 22:00)

Calculate odds ratio at each counter
(larger odds ratio
= bigger reduction in cyclists aferdark)

Road brightness at cycle counters

Calculate average pixel brightness of road segment around counter

Convert average pixel brightness to
'Brightness Factor’ - standardised to average brightness across whole of Birmingham

Brightness and cycling after-dark

Brightness Factor

Conclusion

Cycling should be viable and inclusive option at all times of day

Darkness puts people off cycling

IDON'T LIKETHEDARK.

Only small amount of lighting may be needed to encourage cycling after-dark

Thanks for listening

j.uttley@sheffield.ac.uk

@AJ_Uttley
Any questions, if you've not fallen asleep?

Thanks for listening

j.uttley@sheffield.ac.uk

@AJ_Uttley
Any questions, if you've not fallen asleep?

Street light density

Street light density category	Number of cycle counters	Median street light density (lights per 100 m)
None	8	0
Low	20	2.0
High	20	3.5

Larger odds ratio = greater reduction afterdark

Light density

[^0]: Abstract In a survey of 1,402 current and potential cyclists in Metro Vancouver, 73 motivators and deterrents of cycling were evaluated. The top motivators, consistent among regular, frequent, occasional and potential cyclists, were: routes away from traffic noise and pollution; routes with beautiful scenery; and paths separated from traffic. In factor

